
Design and Analysis of Algorithms
Dynamic Programming (III)

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

1 / 72

Design and Analysis of Algorithms
Dynamic Programming (III)

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

2 / 72

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

3 / 72

Return on Investment

Problem. Given m coins, n projects, and function fi(x) denotes
profit of investing x on the i-th project.

Find the optimal investment scheme that maximizes profit.
Solution: a vector (x1, x2, . . . , xn), xi: investment on project i
Optimized function: max

∑n
i=1 fi(xi)

Constraints: x1 + x2 + · · ·+ xn = m, xi ∈ N

Table: 5 coins on 4 projects

x f1(x) f2(x) f3(x) f4(x)

0 0 0 0 0

1 11 0 2 20

2 12 5 10 21

3 13 10 30 22

4 14 15 32 23

5 15 20 40 24

4 / 72

Subproblems and Computation Order

Subproblem: defined by two parameters k and x

k: invest on the 1, 2, . . . , k projects
the total investment is less than x

The parameter in matrix multiplication chain is a tuple of index, of
the same type
(k, x) are of different types ; 2-dimension dynamic programming

Original problem: k = n, x = m

Computation oder: k = 1, 2, . . . , n; for any k, x = 1, 2, . . . ,m

can be implemented by two level loop

5 / 72

Iteration Relation of Optimized Function

Optimized function OPTk(x): the maximal profit of investing x
coins on the first k projects
Iteration relation: Determine OPTk(x) from OPTk−1(y) for all
y ≤ x

OPTk(x) = max
0≤xk≤x

{fk(xk) + OPTk−1(x− xk)}, k > 1

OPT1(x) = f1(x), k = 1

6 / 72

Demo of k = 2

x f1(x) f2(x) f3(x) f4(x)

0 0 0 0 0

1 11 0 2 20

2 12 5 10 21

3 13 10 30 22

4 14 15 32 23

5 15 20 40 24

k = 1 corresponds to the initial values: OPT1(1) = 11,
OPT1(2) = 12, OPT1(3) = 13, OPT1(4) = 14, OPT1(5) = 15

OPT2(1) = max{f1(1), f2(1)} = 11

OPT2(2) = max{f2(2),OPT1(1) + f2(1),OPT1(2)} = 12

OPT2(3) =
max{f2(3),OPT1(1) + f2(2),OPT1(2) + f2(1),OPT1(3)} = 16

Similarly, we can compute OPT2(4) = 21, OPT2(5) = 26

7 / 72

Memo and Solution

x OPT1(·) s1(·) OPT2(·) s2(·) OPT3(·) s3(·) OPT4(·) s4(·)
1 11 1 11 0 11 0 20 1

2 12 2 12 0 13 1 31 1

3 13 3 16 2 30 3 33 1

4 14 4 21 3 41 3 50 1

5 15 5 26 4 43 4 61 1

OPTk(x) records maximized profit of investing x coins on the
first k projects
sk(x) records the investment on k-th project

s4(5) = 1⇒ x4 = 1, s3(5− 1) = s3(4)

s3(4) = 3⇒ x3 = 3, s2(4− 3) = s2(1)

s2(1) = 0⇒ x2 = 0, s1(1− 0) = s1(1)

s1(1) = 1⇒ x1 = 1

Solution: (x1 = 1, x2 = 0, x3 = 3, x4 = 1), OPT4(5) = 61

8 / 72

Complexity Analysis

Memo table is a matrix of m rows (total number of coins) and n
columns (total number of projects), totally mn items:

OPTk(x) = max
0≤xk≤x

{fk(xk) + OPTk−1(x− xk)}, k > 1

OPT1(x) = f1(x), k = 1 //initial values
The cost of computing OPTk(x): there are possible x+ 1 different
choices of xk ⇒ x+ 1 times add + x times compare
Total number of add

n∑
k=2

m∑
x=1

(x+ 1) =
1

2
(n− 1)m(m+ 3)

Total number of compare
n∑

k=2

m∑
x=1

x =
1

2
(n− 1)m(m+ 1)

Time complexity W (n) = O(nm2), space complexity is O(mn)

9 / 72

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

10 / 72

Motivation

During a robbery, a burglar finds much more loot than he had
expected and has to decide what to take.

His bag (or “knapsack”) will hold a total weight if at most W
pounds.
He want to figure out the most valuable combination of items
he can fit into his bag, quickly.

There are two version of this problem:
with repetition: there are unlimited quantities of each item
available
without repetition: there is one of each item (the bugalar has
broken into an art gallery)

Neither version is likely to have a polynomial-time algorithm.

11 / 72

Formal Motivation

If the above motivation seems frivolous
replace “weight” with “CPU time”
replace “only W pounds can be taken” with “only W units of
CPU times are available”

CPU time can also replaced by bandwidth

The knapsack problem generalizes a wide variety of resource-
constrained selection tasks.

12 / 72

Outline

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

13 / 72

Knapsack with Repetition

Problem. Given n items and a knapsack, item i weighs wi > 0 and
has value vi > 0, knapsack has capacity of W
Goal. Fill knapsack so as to maximize total value.

Table: knapsack instance, W = 11

i 1 2 3 4 5

vi 1 6 18 22 28

wi 1 2 5 6 7

Greedy by value (maximum vi first): {28× 1, 6× 2} has value
40

Greedy by weight (minimum wi first): {1× 11} has value 11

Greedy by ratio (maximum ratio vi/wi first): {5, 2× 2} has
value 40

Observation. None of the above greedy algorithms is optimal.
14 / 72

Modeling

Solution vector: x = (x1, x2, . . . , xn) ∈ (N)n, xi is the number of
item i

Optimized goal: max
∑n

i=1 vixi

Constraint:
∑n

i=1wixi ≤W

linear programming: find min or max of optimized function
with linear constraints

integer programming: linear programming when xi are
non-negative integers

15 / 72

Looking for Subproblems

As always, the main question in dynamic programming is:

what are subproblems

It usually takes a little experimentation to figure out exactly
what works.

For the knapsack problem with repetition, we can shrink the
original problem in three ways:

smaller knapsack capacities w ≤W

fewer items (for instance, items 1, 2, . . . , j for j ≤ n)
combination of the above

16 / 72

Dynamic Programming: False Start

Initial attempt: put restriction on the item number, define OPT(j)
= maximum value achievable with items 1, . . . , j with weight
capacity limit W . �

Case 1. OPT(j) does not select item j.
K selects best of {1, 2, . . . , j − 1} ; satisfy optimal
substructure property (proof via exchange argument) �

Case 2. OPT(j) selects item j �
We don’t know the consequence of selecting item j, cause it
will change weight limit of subproblems ; cannot make a
decision

We need also consider restriction of capacity to introduce more
subproblems!

17 / 72

Dynamic programming: Adding a New Variable

Define OPTj(w) = max value of choosing from items {1, . . . , j}
with weight limit w. �
Case 1. OPTj(w) does not select item j

OPTj(w) selects best of {1, 2, . . . , j−1} using weight limit w.
Case 2. OPTj(w) selects item j (at least 1)

New weight limit = w − wj .
OPTj(w) selects best of {1, 2, . . . , j} using this new weight
limit (cause we allow repetition)

Both cases satisfy optimal substructure property

18 / 72

Wrap it Up

Subproblem: defined by two variables j and w

j: select from subset of {1, 2, . . . , j}
w: limit on capacity (weight)

OPTj(w): maximum value achievable of selecting from the first j
items with weight limit w
Computation order: j = 1→ n; for any j, w = 1→W

OPTj(w) = max{OPTj−1(w),OPTj(w − wj) + vj}

OPT0(w) = 0, 0 ≤ w ≤W,OPTj(0) = 0, 0 ≤ j ≤ n
define OPTj(w) = −∞, 1 ≤ j ≤ n,w < 0

OPTj(w − wj) + vj : maximum value when selecting at least
one j-th item
setting OPTj(w) = −∞ for w < 0 ; one does not have to
explicity check if w − wj ≥ 0

19 / 72

Pseudocode of Knapsack

Algorithm 1: Knapsack(n,W, {wi}i∈n, {vi}i∈n)
1: for w = 0 to W do OPT0(w)← 0;
2: for j = 1 to n do OPTj(0)← 0;
3: set OPTj(w)← −∞ for 1 ≤ j ≤ n w < 0;
4: for j = 1 to n do
5: for w = 1 to W do
6: OPTj(w) = max{OPTj−1(w),OPTj(w − wj) + vj}
7: end
8: end

Buttom-up approach

20 / 72

Demo

Table: knapsack instance, n = 4,W = 10

i 1 2 3 4

vi 1 3 5 9

wi 2 3 4 7

Computation process of OPTj(w) (hint: how to fill the matrix)
left to right, top to down
top to down, left to right

j
w

1 2 3 4 5 6 7 8 9 10

1 0 1 1 2 2 3 3 4 4 5

2 0 1 3 4 4 6 6 7 9 9

3 0 1 3 5 5 6 8 10 10 11

4 0 1 3 5 5 6 9 10 10 12

21 / 72

A Remark

Alternative optimization function: like ROI problem

OPTj(w) = max
0≤xj≤⌊w/wj⌋

{OPTj−1(w − xj · wj) + xj · vj}

Pros: more intuitive and easy to understand
Cons: complexity of computing OPTj(w) depends on w,
a.k.a. requires ⌊w/wj⌋ comparisons, in contrast to the original
optimized function which only requires one comparsion.

Lesson
The design of optimized function is vital

22 / 72

Trace Function

sj(w): the biggest item number in solution OPTj(w)

sj(w) =

{
sj−1(w) OPTj−1(w) > OPTj(w − wk) + vk

j OPTj−1(w) ≤ OPTj(w − wk) + vk

s1(w) =

{
0 w < w1

1 w ≥ w1

Trace function is used to trace solution and output the detailed
information

23 / 72

Pseudocode of TraceSolution

Algorithm 2: TraceSolution(s[n,W])

Input: table sj(w), j ∈ [n], w ∈ [W]
Output: solution vector x1, x2, . . . , xn

1: for i← 1 to n do xi ← 0;
2: w ←W , k ← n;
3: while sk(w) = k do //continue select k-th item
4: w ← w − wk;
5: xk ← xk + 1;
6: end
7: if sk(w) ̸= 0 then k ← sk(w), goto 3; //trace next item
8: else finishes tracing;

24 / 72

Trace Solution

Table: sj(w)

j
w

1 2 3 4 5 6 7 8 9 10

1 0 1 1 1 1 1 1 1 1 1

2 0 1 2 2 2 2 2 2 2 2

3 0 1 2 3 3 3 3 3 3 3

4 0 1 2 3 3 3 4 3 4 4

s4(10) = 4⇒ x4 ≥ 1

s4(10− w4) = s4(3) = 2⇒ x4 = 1, x3 = 0, x2 ≥ 1

s2(3− w2) = s2(0) = 0⇒ x2 = 1, x1 = 0

Solution: x1 = 0, x2 = 1, x3 = 0, x4 = 1, max profit is 12.

25 / 72

Complexity Analysis

The above algorithm solves the knapsack problem with n items
and maximum weight W in Θ(nW) time and Θ(nW) space.

According to the optimization function

OPTj(w) = max{OPTj−1(w),OPTj(w − wj) + vj}

Memo computation: takes O(1) time per table entry, there
are Θ(nW) table entries
Trace back: at most Θ(n+W) steps (think why?)

The total time complexity and space complexity are O(nW)

Remarks
Not polynomial in input size, cause for integer W , binary
representation requires logW bit, thus input size is n and
logW ← super-polynomial

26 / 72

A Second Thought

Do we really have to use 2-dimension dynamic programming?

Consider only put restriction on capcitity, define:

OPT(w) =
maximum value achievable with a knapsack with capcitity w

How to express this in terms of smaller subproblems?
If the optimal solution to OPT(w) includes item i, then
removing this item from the knapsack leaves an optimal
solution to OPT(w − wi).
In other words, OPT(w) = OPT(w − wi) + vi, for some i.
We don’t know which i, so we need to try all possibilities.

27 / 72

A Second Thought

Do we really have to use 2-dimension dynamic programming?

Consider only put restriction on capcitity, define:

OPT(w) =
maximum value achievable with a knapsack with capcitity w

How to express this in terms of smaller subproblems?
If the optimal solution to OPT(w) includes item i, then
removing this item from the knapsack leaves an optimal
solution to OPT(w − wi).
In other words, OPT(w) = OPT(w − wi) + vi, for some i.
We don’t know which i, so we need to try all possibilities.

27 / 72

A Second Thought

Do we really have to use 2-dimension dynamic programming?

Consider only put restriction on capcitity, define:

OPT(w) =
maximum value achievable with a knapsack with capcitity w

How to express this in terms of smaller subproblems?
If the optimal solution to OPT(w) includes item i, then
removing this item from the knapsack leaves an optimal
solution to OPT(w − wi).
In other words, OPT(w) = OPT(w − wi) + vi, for some i.
We don’t know which i, so we need to try all possibilities.

27 / 72

Iteration Relation

The algorithm now writes itself ; incredibly simple and elegant

Algorithm 3: Knapsack(n,W, {wi}i∈n, {vi}i∈n)
1: OPT(0)← 0 // convention that the maximum over an

empty knapsack is 0;
2: for w = 1 to W do
3: OPT(w) = maxi:wi≤w{OPT(w − wi) + vi}
4: end
5: return OPT(W);

The algorithm fills in a one-dimension table of length W + 1, in
left-to-right order

space complexity: O(W)

time complexity: each entry can take up to O(n) time to
compute ⇒ overall running time is O(nW).

28 / 72

Think over It

As always, there is an underlying DAG. Try constructing it, and
you will be rewarded with a startling insight

this particular variant of knapsack boils down to finding the
longest path in a DAG

29 / 72

Outline

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

30 / 72

Knapsack without Repetition

What if repetitions are not allowed?

Our earlier subproblems now become completely useless.
For instance, knowing the value of the form OPT(w − wj)
does not help to make further decision, cause we don’t know
whether or not item j has already got used up in this partial
solution.

We must refine the subproblem to carry additional information
about the items being used as before ; add another parameter
0 ≤ j ≤ n (same as the first approach to knapsack problem with
repetition):

OPTj(w) =maximum value using items {1, . . . , j} and weight
limit w

The answer we seek is OPTn(W).

31 / 72

Knapsack without Repetition

What if repetitions are not allowed?

Our earlier subproblems now become completely useless.
For instance, knowing the value of the form OPT(w − wj)
does not help to make further decision, cause we don’t know
whether or not item j has already got used up in this partial
solution.

We must refine the subproblem to carry additional information
about the items being used as before ; add another parameter
0 ≤ j ≤ n (same as the first approach to knapsack problem with
repetition):

OPTj(w) =maximum value using items {1, . . . , j} and weight
limit w

The answer we seek is OPTn(W).

31 / 72

Iteration Relation

How to express OPTj(w) in terms of smaller subproblems?

Quite simple: either item j is needed to achieve the optimal value
or it isn’t needed.

OPTj(w) = max{OPTj−1(w − wj) + vj ,OPTj−1(w)}

In other words, we express OPTj(w) in terms of subproblems
OPTj−1(·).

32 / 72

Pseudocode

Algorithm 4: Knapsack(n,W, {wi}i∈[n], {vi}i∈n)
1: OPT0(w)← 0 for w ∈ [0,W], OPTj(0) = 0 for j ∈ [0, n];
2: set OPTj(w) = −∞ for w < 0;
3: for j = 1 to n do
4: for w = 1 to W do
5: OPTj(w) = max{OPTj−1(w−wj)+vj ,OPTj−1(w)}
6: end
7: end
8: return OPTn(W);

This algorithm fills out a 2-dimension table, with W + 1 rows
and n+ 1 columns. Each table entry takes just constant time.
The running time remains the same: O(nW).

33 / 72

Memoization

In dynamic programming, we write out a recursive formula that
express large problems in terms of smaller ones and then use it to
fill a table of solution values in a bottom-up manner, from smaller
subproblem to largest.

The formula also suggests a recursive algorithm.

As we saw earlier that naive recursion can be terribly inefficient,
because it solves the same subproblems over and over again.

What about a more intelligent recursive implementation? One that
remembers its previous invocations and thereby avoids repeating

them?

34 / 72

Memoization

For the knapsack problem with repetitions, the recursive algorithm
can use key-value mapping to store OPT(·) that had already been
computed.

At each recursive call requesting some OPT(w), the algorithm
first checks if the answer was already in the KV mapping and
then proceeds to its calculation only if it wasn’t.
This trick is called memoization.
Note: The KV mapping can be realized using array or hash
table, depending on the data type and distibution of keys.

Complexity: recursive algorithm never repeats a subproblem ;
running time is O(nW), just like dynamic program.

However, the constant factor in the big-O notation is
substantially larger because of the overhead of recursion.

35 / 72

Disadvantge of Dynamic Programming

In some cases, memoization pays off.
Dynamic programming automatically solves every subproblem
that could conceivably be needed, while memoization only
ends up solving the ones that are actually needed.

For instance, suppose W and all the weights wi are the multiples
of 100. Then a subproblem OPTj(w) is useless if 100 does not
divide w

DP will always compute all table entries.
The memorized recursive algorithm will never look at these
extraneous table entries.

The worst-case complexity of DP and recursive algorithm are
still the same, but the later may perform better on some in-
stances since its programming is instance dependent.

36 / 72

Disadvantge of Dynamic Programming

In some cases, memoization pays off.
Dynamic programming automatically solves every subproblem
that could conceivably be needed, while memoization only
ends up solving the ones that are actually needed.

For instance, suppose W and all the weights wi are the multiples
of 100. Then a subproblem OPTj(w) is useless if 100 does not
divide w

DP will always compute all table entries.
The memorized recursive algorithm will never look at these
extraneous table entries.

The worst-case complexity of DP and recursive algorithm are
still the same, but the later may perform better on some in-
stances since its programming is instance dependent.

36 / 72

Disadvantge of Dynamic Programming

In some cases, memoization pays off.
Dynamic programming automatically solves every subproblem
that could conceivably be needed, while memoization only
ends up solving the ones that are actually needed.

For instance, suppose W and all the weights wi are the multiples
of 100. Then a subproblem OPTj(w) is useless if 100 does not
divide w

DP will always compute all table entries.
The memorized recursive algorithm will never look at these
extraneous table entries.

The worst-case complexity of DP and recursive algorithm are
still the same, but the later may perform better on some in-
stances since its programming is instance dependent.

36 / 72

Extension of Knapsack Problem

Decision version of knapsack problem is NP-COMPLETE.
There exists a poly-time algorithm that produces a feasible solution
that has value within 1% of optimum.

Variants of Knapsack
Knapsack with constraint on item number: maximum number
of i-th item is ni

0− 1 Knapsack: xi = 0, 1; i ∈ [n]

Multi-Knapsack: m knapsack, the weight limit of knapsack i
is Wi, i ∈ [m].
2-dimension Knapsack: each item with weight wi and volume
ti, i ∈ [n], the weight limit is W , the volume limit is V

37 / 72

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

38 / 72

Longest Common Substring

Let X = (x1, x2, . . . , xm) and Z = (z1, z2, . . . , zn) be two strings.
Z is a substring of X if there exists an index sequence of strict
incresasing order (i1, . . . , ik) such that zk = xik for all k ∈ [n].
Common substring of X and Y : the substring of both X and Y .
Problem. Find the longest string of X = (x1, x2, . . . , xm) and
Y = (y1, y2, . . . , yn).

Example
X : A B C B D A B

Y : B D C A B A

LCS: B C B A, length is 4

39 / 72

Brute Force Algorithm

Assume m ≤ n, |X| = m, |Y | = n

Brute force algorithm: for each substring of X, check if the
substring appears in Y

Complexity analysis
check whether a candidate substring is a substring of a given
string takes O(n)

think how? hint: sequentially scan two strings using two
pointers (after each comparision, at least one point moves
forward, thus the maximum number of comparsion is 2n)

there are totally 2m substrings in X

Complexity: O(n2m)

40 / 72

Dynamic Programming: Subproblem

Introduce i and j to define subproblem
X right boundary is i, Y right boundary is j

Xi = (x1, x2, . . . , xi), Yj = (y1, y2, . . . , yj)

y1 y2 . . . yj . . . yn

x1

x2

. . .

xi

. . .

xm

subproblem

41 / 72

Relations Between Problems and Subproblems
Xm = (x1, x2, . . . , xm), Yn = (y1, y2, . . . , yn)

let Zk = (z1, z2, . . . , zk) = LCS(Xm, Yn)

Consider the following cases:

xm = yn ⇒ zk = xm = yn, Zk−1 = LCS(Xm−1, Yn−1)
xm ̸= yn (one or both of the following cases occur)

zk ̸= xm ⇒ Zk = LCS(Xm−1, Yn)
zk ̸= yn ⇒ Zk = LCS(Xm, Yn−1)

Y

X

satisfy optimial sub-structure

42 / 72

Relations Between Problems and Subproblems
Xm = (x1, x2, . . . , xm), Yn = (y1, y2, . . . , yn)

let Zk = (z1, z2, . . . , zk) = LCS(Xm, Yn)

Consider the following cases:
xm = yn ⇒ zk = xm = yn, Zk−1 = LCS(Xm−1, Yn−1)

xm ̸= yn (one or both of the following cases occur)
zk ̸= xm ⇒ Zk = LCS(Xm−1, Yn)
zk ̸= yn ⇒ Zk = LCS(Xm, Yn−1)

Y

X

satisfy optimial sub-structure

42 / 72

Relations Between Problems and Subproblems
Xm = (x1, x2, . . . , xm), Yn = (y1, y2, . . . , yn)

let Zk = (z1, z2, . . . , zk) = LCS(Xm, Yn)

Consider the following cases:
xm = yn ⇒ zk = xm = yn, Zk−1 = LCS(Xm−1, Yn−1)
xm ̸= yn (one or both of the following cases occur)

zk ̸= xm ⇒ Zk = LCS(Xm−1, Yn)

zk ̸= yn ⇒ Zk = LCS(Xm, Yn−1)

Y

X

satisfy optimial sub-structure

42 / 72

Relations Between Problems and Subproblems
Xm = (x1, x2, . . . , xm), Yn = (y1, y2, . . . , yn)

let Zk = (z1, z2, . . . , zk) = LCS(Xm, Yn)

Consider the following cases:
xm = yn ⇒ zk = xm = yn, Zk−1 = LCS(Xm−1, Yn−1)
xm ̸= yn (one or both of the following cases occur)

zk ̸= xm ⇒ Zk = LCS(Xm−1, Yn)
zk ̸= yn ⇒ Zk = LCS(Xm, Yn−1)

Y

X

satisfy optimial sub-structure

42 / 72

Relations Between Problems and Subproblems
Xm = (x1, x2, . . . , xm), Yn = (y1, y2, . . . , yn)

let Zk = (z1, z2, . . . , zk) = LCS(Xm, Yn)

Consider the following cases:
xm = yn ⇒ zk = xm = yn, Zk−1 = LCS(Xm−1, Yn−1)
xm ̸= yn (one or both of the following cases occur)

zk ̸= xm ⇒ Zk = LCS(Xm−1, Yn)
zk ̸= yn ⇒ Zk = LCS(Xm, Yn−1)

Y

X

satisfy optimial sub-structure

42 / 72

Relations Between Problems and Subproblems
Xm = (x1, x2, . . . , xm), Yn = (y1, y2, . . . , yn)

let Zk = (z1, z2, . . . , zk) = LCS(Xm, Yn)

Consider the following cases:
xm = yn ⇒ zk = xm = yn, Zk−1 = LCS(Xm−1, Yn−1)
xm ̸= yn (one or both of the following cases occur)

zk ̸= xm ⇒ Zk = LCS(Xm−1, Yn)
zk ̸= yn ⇒ Zk = LCS(Xm, Yn−1)

Y

X

satisfy optimial sub-structure
42 / 72

Optimized Function and Iteration Relation

Optimized function: L(i, j)

LCS length of Xi = (x1, x2, . . . , xi) and Yj = (y1, y2, . . . , yj)

Iteration relation

L(i, j) =

0 i = 0 ∨ j = 0
L(i− 1, j − 1) + 1 i, j > 0 ∧ xi = yj
max{L(i, j − 1), L(i− 1, j)} i, j > 0 ∧ xi ̸= yj

Note: We do not know which one occurs, so we choose the
maximial one (if the values are equal, both cases constitute
solutions).

43 / 72

Indicator Function

Indicator functuon s(i, j) with values: ↖, ←, ↑

L(i, j) = L(i− 1, j − 1) + 1: ↖
L(i, j) = L(i, j − 1): ←
L(i, j) = L(i− 1, j): ↑

y1 y2 yj−1 yj Yj

x1

x2

. . .

. . .

xi−1

xi

Xi

44 / 72

Indicator Function

Indicator functuon s(i, j) with values: ↖, ←, ↑
L(i, j) = L(i− 1, j − 1) + 1: ↖

L(i, j) = L(i, j − 1): ←
L(i, j) = L(i− 1, j): ↑

y1 y2 yj−1 yj Yj

x1

x2

. . .

. . .

xi−1

xi

Xi

44 / 72

Indicator Function

Indicator functuon s(i, j) with values: ↖, ←, ↑
L(i, j) = L(i− 1, j − 1) + 1: ↖
L(i, j) = L(i, j − 1): ←

L(i, j) = L(i− 1, j): ↑

y1 y2 yj−1 yj Yj

x1

x2

. . .

. . .

xi−1

xi

Xi

44 / 72

Indicator Function

Indicator functuon s(i, j) with values: ↖, ←, ↑
L(i, j) = L(i− 1, j − 1) + 1: ↖
L(i, j) = L(i, j − 1): ←
L(i, j) = L(i− 1, j): ↑

y1 y2 yj−1 yj Yj

x1

x2

. . .

. . .

xi−1

xi

Xi

44 / 72

Pseudocode of LCS

Algorithm 5: LCS(X[m], Y [n])

1: L(i, 0)← 0, i ∈ [m], L(0, j)← 0, j ∈ [n];
2: for i← 1 to m do
3: for j ← 1 to n do
4: if X[i] = Y [j] then
5: L(i, j) = L(i− 1, j − 1) + 1, s(i, j)← (↖)
6: else if L(i− 1, j) ≥ L(i, j − 1) then
7: L(i, j)← L(i− 1, j), s(i, j)← (↑) else
8: L(i, j)← L(i, j − 1), s(i, j)← (←)
9: end

10: end
11: end

45 / 72

Track Solution

Algorithm 6: TrackLCS(s,m, n)

Output: LCS of X and Y
1: while m ̸= 0 ∧ n ̸= 0 do
2: if s(m,n) = (↖) then
3: output X[m]; m = m− 1, n = n− 1, continue;
4: end
5: if s(m,n) = (↑) then
6: m = m− 1, continue;
7: end
8: if s(m,n) = (←) then
9: n = n− 1, continue;

10: end
11: end

46 / 72

Demo of Indicator Function

X = (A,B,C,B,D,A,B), Y = (B,D,C,A,B,A)

1 2 3 4 5 6
1 s[1, 1] =↑ s[1, 2] =↑ s[1, 3] =↑ s[1, 4] =↖ s[1, 5] =← s[1, 6] =↖
2 s[2, 1] =↖ s[2, 2] =← s[2, 3] =← s[2, 4] =↑ s[2, 5] =↖ s[2, 6] =←
3 s[3, 1] =↑ s[3, 2] =↑ s[3, 3] =↖ s[3, 4] =← s[3, 5] =↑ s[3, 6] =↑
4 s[4, 1] =↑ s[4, 2] =↑ s[4, 3] =↑ s[4, 4] =↑ s[4, 5] =↖ s[4, 6] =←
5 s[5, 1] =↑ s[5, 2] =↑ s[5, 3] =↑ s[5, 4] =↑ s[5, 5] =↑ s[5, 6] =←
6 s[6, 1] =↑ s[6, 2] =↑ s[6, 3] =↑ s[6, 4] =↖ s[6, 5] =↑ s[6, 6] =↖
7 s[7, 1] =↑ s[7, 2] =↑ s[7, 3] =↑ s[7, 4] =↑ s[7, 5] =↑ s[7, 6] =↑

Solution: LCS = (X[2], X[3], X[4], X[6]) = (B,C,B,A)

47 / 72

Complexity Analysis

Computation of optimized function
Initialization: O(m+ n)

Computation: in each loop, require ≤ 2 times comparision,
complexity is Θ(mn)

Computation of indicator function
Computation: Θ(mn)

Trace solution: Θ(m+ n) (reduce the size of X or/and Y by
1 in each step)

Overall time complexity: Θ(mn)

Space complexity: Θ(mn)

48 / 72

Further Discussion

Standard LCS problem
Dynamic programming: Θ(nm)

Generalized suffix tree: Θ(n+m)

Generalized LCS problem: find LCS for k strings with length
n1, . . . , nk

k-dimension Dynamic programming: Θ(n1 · · ·nk)

Generalized suffix tree: Θ(n1 + · · ·+ nk)

49 / 72

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

50 / 72

Motivation of String Similarity

When a spell checker encounters a possible misspelling, it looks in
its dictionary for other words that are close by.

What is the appropriate notion of closeness or similarity for two
strings?

51 / 72

Edit Distance

Edit distance. [Levnshtein 1966, Needleman-Wunsch 1970]
Given two strings x and y, after a sequence of operations (replace,
insert, delete), change y to x. The minimal number of operations
is called the edit distance of between x and y, write as ∆(x, y).

capture similarity between two strings

Justify the definition: satisfy three rules of distance
Non-negative: ∆(x, y) ≥ 0. ∆(x, y) = 0 iff x = y

Symmetric: ∆(x, y) = ∆(y, x) (just reverse the operation)
Triangle inequality: ∀x, y, z, ∆(x, z) + ∆(z, y) ≥ ∆(x, y)

x→ z → y is one path from x to y

52 / 72

How to Compute Edit Distance

Sequence alignment. A natural measure of edit distance is the
extent to which they can be aligned, or matched up.

an alignment is simply a way of writing the strings one above
the other, allow adding ⊥

S ⊥ N O W Y

S U N N ⊥ Y

1 mismatches, 2 gap

⊥ S N O W ⊥ Y

S U N ⊥ ⊥ N Y

1 mismatches, 4 gap
⊥ indicates a “gap”: can be placed in either string —
interpreting as delete or insert
Cost of an alignment is the number of columns in which the
letters differ.

cost =
∑
xi−yi

diff(i, j)︸ ︷︷ ︸
mismatch

+
∑

xi unmatched
α+

∑
yj unmatched

β

︸ ︷︷ ︸
gap

53 / 72

Insight of Edit Distance

Edit distance between two strings is the cost of their best
alignment.

Finding the edit distance is equivalent to finding the optimal
alignment.

Edit distance is so named because it can also be thought of as the
minimum number of edits — insertion, deletions, and substitutions
— needed to transform the first string to the second.

The above example: insert ‘U’, substitute ‘O’ → ‘N’, and
delete ‘W’

In general, there are so many possible alignments between two
strings ; it would be terribly inefficient to search through all of
them for the best one.

54 / 72

Insight of Edit Distance

Edit distance between two strings is the cost of their best
alignment.

Finding the edit distance is equivalent to finding the optimal
alignment.

Edit distance is so named because it can also be thought of as the
minimum number of edits — insertion, deletions, and substitutions
— needed to transform the first string to the second.

The above example: insert ‘U’, substitute ‘O’ → ‘N’, and
delete ‘W’

In general, there are so many possible alignments between two
strings ; it would be terribly inefficient to search through all of
them for the best one.

54 / 72

A Dynamic Programming Solution

When solving a problem by dynamic programming, the most
crucial question is

What are the subproblems?

As long as they are chosen so as to have the optimal substructure,
it is easy to write the algorithm: iteratively solve one subproblem
after the other, in order of increasing order.
Goal. Finding the edit distance E(m,n) between two strings
x[1 . . .m] and y[1 . . . n].
Subproblem. Looking at the edit distance between some prefix of
x[1 . . . i] and some prefix of y[1 . . . j], call the subproblem E(i, j).

E X P O N E N T I A L

P O L Y N O M I A L

subproblem E(7, 5)

55 / 72

Structure of Problem

We need somehow express E(i, j) in terms of smaller subproblems.
Analyze the best alignment between x[1 . . . i] and y[1 . . . j]: their
rightmost column can only be one of three things:

x[i]

⊥

⊥

y[j]

x[i]

y[j]

Case 1a. leave xi unmatched
gap for xi + min cost of aligning x[1 . . . i− 1] and y[1 . . . j].

Case 1b. leave yj unmatched
gap for yj + min cost of aligning x[1 . . . i] and y[1 . . . j − 1].

Case 2. M matches xi − yj .
(mis)match for xi − yj + min cost of aligning x[1 . . . i− 1]
and y[1 . . . j − 1].

optimal substructure property (proof via exchange argument)
56 / 72

Iteration Relation for Optimized Function

Optimized function: E(i, j) — edit distance between x[1, . . . , i]
and y[1, . . . , j]

Initial values: E(i, 0) = i, E(0, j) = j

Iteration relation. We have expressed E(i, j) in terms of three
smaller subproblems E(i− 1, j), E(i, j − 1), E(i− 1, j − 1).

We have no idea which of them is the right one, so we need
to try them all and pick the best

E(i, j) = min{1+E(i−1, j), 1+E(i, j−1), diff(i, j)+E(i−1, j−1)}

diff(i, j) =
{

0 x[i] = y[j]
1 x[i] ̸= y[j]

57 / 72

Computation Order

The answers to all the subproblems E(i, j) form a 2-dimensional
table.

What order should these subproblems be solved?

Any order is fine, as long as E(i− 1, j), E(i, j − 1) and
E(i− 1, j − 1) are handled before E(i, j).

1 fill in the table one row at a time, from top row to bottom
row, and moving left to right across each row

2 or fill in the table column by column
Both methods would ensure that by the time we get around to
compute a particular table entry, all the other entries we need are
already filled in.

58 / 72

j − 1 j n

i− 1

i

m GOAL

59 / 72

Track Solution

x S N O W Y
y 0 1 2 3 4 5

S 1 0 1 2 3 4

U 2 1 1 2 3 4

N 3 2 1 2 3 4

N 4 3 2 2 3 4

Y 5 4 3 3 3 3

E(5, 5)← E(4, 4) + 0

E(4, 4)← E(4, 3) + 1

E(4, 3)← E(3, 2) + 1

E(3, 2)← E(2, 1) + 0

E(2, 1)← E(1, 1) + 1

E(1, 1)← E(0, 0) + 0

Y

Y

W

⊥

O

N

N

N

⊥

U

S

S

60 / 72

Track Solution

x S N O W Y
y 0 1 2 3 4 5

S 1 0 1 2 3 4

U 2 1 1 2 3 4

N 3 2 1 2 3 4

N 4 3 2 2 3 4

Y 5 4 3 3 3 3

E(5, 5)← E(4, 4) + 0

E(4, 4)← E(4, 3) + 1

E(4, 3)← E(3, 2) + 1

E(3, 2)← E(2, 1) + 0

E(2, 1)← E(1, 1) + 1

E(1, 1)← E(0, 0) + 0

Y

Y

W

⊥

O

N

N

N

⊥

U

S

S

60 / 72

Track Solution

x S N O W Y
y 0 1 2 3 4 5

S 1 0 1 2 3 4

U 2 1 1 2 3 4

N 3 2 1 2 3 4

N 4 3 2 2 3 4

Y 5 4 3 3 3 3

E(5, 5)← E(4, 4) + 0

E(4, 4)← E(4, 3) + 1

E(4, 3)← E(3, 2) + 1

E(3, 2)← E(2, 1) + 0

E(2, 1)← E(1, 1) + 1

E(1, 1)← E(0, 0) + 0

Y

Y

W

⊥

O

N

N

N

⊥

U

S

S

60 / 72

Track Solution

x S N O W Y
y 0 1 2 3 4 5

S 1 0 1 2 3 4

U 2 1 1 2 3 4

N 3 2 1 2 3 4

N 4 3 2 2 3 4

Y 5 4 3 3 3 3

E(5, 5)← E(4, 4) + 0

E(4, 4)← E(4, 3) + 1

E(4, 3)← E(3, 2) + 1

E(3, 2)← E(2, 1) + 0

E(2, 1)← E(1, 1) + 1

E(1, 1)← E(0, 0) + 0

Y

Y

W

⊥

O

N

N

N

⊥

U

S

S

60 / 72

Track Solution

x S N O W Y
y 0 1 2 3 4 5

S 1 0 1 2 3 4

U 2 1 1 2 3 4

N 3 2 1 2 3 4

N 4 3 2 2 3 4

Y 5 4 3 3 3 3

E(5, 5)← E(4, 4) + 0

E(4, 4)← E(4, 3) + 1

E(4, 3)← E(3, 2) + 1

E(3, 2)← E(2, 1) + 0

E(2, 1)← E(1, 1) + 1

E(1, 1)← E(0, 0) + 0

Y

Y

W

⊥

O

N

N

N

⊥

U

S

S

60 / 72

Track Solution

x S N O W Y
y 0 1 2 3 4 5

S 1 0 1 2 3 4

U 2 1 1 2 3 4

N 3 2 1 2 3 4

N 4 3 2 2 3 4

Y 5 4 3 3 3 3

E(5, 5)← E(4, 4) + 0

E(4, 4)← E(4, 3) + 1

E(4, 3)← E(3, 2) + 1

E(3, 2)← E(2, 1) + 0

E(2, 1)← E(1, 1) + 1

E(1, 1)← E(0, 0) + 0

Y

Y

W

⊥

O

N

N

N

⊥

U

S

S

60 / 72

Track Solution

x S N O W Y
y 0 1 2 3 4 5

S 1 0 1 2 3 4

U 2 1 1 2 3 4

N 3 2 1 2 3 4

N 4 3 2 2 3 4

Y 5 4 3 3 3 3

E(5, 5)← E(4, 4) + 0

E(4, 4)← E(4, 3) + 1

E(4, 3)← E(3, 2) + 1

E(3, 2)← E(2, 1) + 0

E(2, 1)← E(1, 1) + 1

E(1, 1)← E(0, 0) + 0

Y

Y

W

⊥

O

N

N

N

⊥

U

S

S

60 / 72

The Underlying DAG

Every dynamic programming has an underlying DAG.
each node represents a subproblem
each edge represents a precedence constraint

S N O W Y

S

U

N

N

Y

Set all edge lengths to 1 except
the green ones
Final answer is the shortest path
from E(0, 0) and E(m,n)

move down: delete
move right: insert
move diagonal: match or
substitution

By altering the weights on the DAG, we can allow generalized
forms of edit distance: insertion, deletion, and substitution have
different associated costs.

61 / 72

Pseudocode

Algorithm 7: SequenceAlignment(x[m], y[n])

1: for i = 0 to m do E(i, 0) = i;
2: for j = 0 to n do E(0, j) = j;
3: for i = 1 to m do
4: for j = 1 to n do
5: E(i, j)← min{1 + E(i− 1, j), 1 + E(i, j −

1), diff(i, j) + E(i− 1, j − 1)}
6: end
7: end
8: return E(m,n);

There are totally mn subproblems, each subproblem requires
constant time ⇒ Θ(mn) time and Θ(mn) space.

62 / 72

1 Return on Investment

2 Knapsack Problem
Knapsack with Repetition
Knapsack without Repetition

3 Longest Common Substring

4 Edit Distance

5 Summary of Dynamic Programming

63 / 72

How to Find Subproblems

Finding the right subproblems takes creativity and experimentation.

But there are a few standard choices that seem to arise repeatedly
in dynamic programming.

64 / 72

One-Dimension Dynamic Programming

The input is x1, x2, . . . , xn. A subproblem is x1, x2, . . . , xi

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The number of subproblems is therefore O(n).
Examples

shortest path in DAG
longest increasing subsequence
max interval sum
image compression

65 / 72

Two-Dimension Dynamic Programming: Type 1

The input is x1, x2, . . . , xn. A subproblem is xi, . . . , xj

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The number of subproblems is therefore O(n2).

Examples
matrix multiplication chain
optimal binary search tree

66 / 72

Two-Dimension Dynamic Programming: Type 2

The input is x1, x2, . . . , xn and y1, . . . , yn. A subproblem is
x1, . . . , xi and y1, . . . , yj

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

The number of subproblems is therefore O(mn).
Examples

return on investment
knapsack problem
longest common substring
edit distance

67 / 72

Another Important Characterization of DP

The computational complexity of DP algorithm not only depends
on the number of subproblems, but also depends on the complexity
of the recursive relation, i.e., the extent that a problem relates to
its subproblems.
We capture such dependence as locality.
Case 1: depend on linear number of subproblems

shortest path in DAG, longest increasing sequence, maximum
interval sum, matrix multiplication chain, optimal binary
search tree,

Case 2: depend on constant number of subproblems
knapsack problem, longest common substring, edit distance

68 / 72

Essence of Dynamic Programming

DP is mainly an optimization over plain recursion.
Wherever we see a recursive solution that has repeated calls
for the same inputs, we can optimize it using DP.

simply store the results of subproblems so that we do not have
to re-compute them when needed later

This simple optimization reduces time complexity from
exponential to polynomial.
Example. A simple recursive solution for Fibonacci numbers
leads to exponential time complexity. But, if we optimize it by
storing solutions of subproblems, time complexity reduces to
linear.

We can think of Dynamic Programming as finding a shortest
path in a huge recursion tree (iterative approach) or travel the
recursion tree with memo (recursive approach).

69 / 72

Greedy vs. Dynamic Programming

Both Dynamic Programming and Greedy are algorithmic paradigms
used to solve optimization problems.

70 / 72

Greedy Paradigm

Theoretical idea: solving the problem step-by-step; on each step,
the algorithm makes a choice, based on some heuristic, that
achieves the most obvious and beneficial profit.
Applicability: problems satisfying greedy property: choosing the
local optimum at each stage will lead to form the global optimum
Optimality: rigorous proof is always needed
Memorization: may need to maintain a data structure to store
current states for making greedy choice
Complexity: generally faster
Fashion: computes its solution by making its choices in a serial
forward fashion, never looking back or revising previous choices.

71 / 72

Dynamic Programming Paradigm

Theoretical idea: finding an order between subproblems; solving
the current subproblem using solutions to previously solved
subproblems
Applicability: problems can be solved via recursive/iterative
approach, but one have to visiting the same state multiple times
Optimality: automatically guaranteed since DP actually considers
all possible cases and then choose the best
Memorization: requires DP table to store solutions of solved
subproblems
Complexity: generally slower
Fashion: computes its solution by synthesizing from smaller
optimal sub solutions: bottom up or top down

72 / 72

	Return on Investment
	Knapsack Problem
	Knapsack with Repetition
	Knapsack without Repetition

	Longest Common Substring
	Edit Distance
	Summary of Dynamic Programming

